ENTERING THE MEMS SENSOR market with a new product can be a particularly daunting task. Even the most seasoned product development teams mistakenly rely on a traditional serial approach. For the fast-paced and demanding MEMS marketplace, this traditional product development cycle will not meet the market needs in terms of cost and timing. To encourage engineering that begins with the end in mind, **Test Early Test Often** and **Concurrent Engineering** are two strategies which can meet market demands.

These product development strategies create quicker learning and shorter design cycles. By implementing these two strategies, product development teams can lower overall development time and cost for the MEMS sensor market.

The traditional product development cycle (PDC) often leads to projects running over budget and behind schedule. Traditional PDCs begin with several design iterations which include thorough design reviews at each stage. Each iteration is typically followed by models and simulations, which in turn are followed by more design iterations. These steps take place over an extended period of time, only after which the design is declared complete and subsequently “frozen”. Samples constructed using the frozen design are tested, which results in the discovery of preventable flaws which then must be addressed with yet another design iteration.

As the traditional PDC continues to iterate, the clock continues to tick, and the budget continues to deplete – meanwhile, the manufacturing process has yet to be considered. Most design teams reach the end of the design phase with enough fixes to get a functional product, but over budget, out of time, and without addressing manufacturability. This type of PDC is costly and the unnecessary serial iterations allow time for competitors to gain market entry first. More disadvantageous yet, without time left to establish the process portion of development, traditional PDCs can lead to manufacturing a product that is not sustainable.

The **Test Early Test Often** approach to product development addresses the flaws of the traditional PDC. This strategy shortens the overall PDC by employing targeted testing early in the development process. The Test Early Test Often approach uncovers weaknesses in designs by testing fundamental design and process assumptions before too much value is added to the part. In this strategy, requirements for new science are highlighted, potential issues are addressed before they become integrated into the process, and the overall cycle of iterative changes is shortened.

The Test Early Test Often strategy relies on low-cost modular samples to perform testing instead of relying on assembled prototypes. To test wire bonds, for example, a shake test on a costly end-of-design prototype sample would be performed in the traditional PDC. A low-cost modular sample, however, could provide valuable early data. This modular sample, such as a 50x50mm aluminum plate populated with 1 mil aluminum wedge bonds of a defined loop height and geometry, can be produced in a few days and subjected to a one hour 10g sinusoi-
The SMART Advantage. **Lowest Overall Development Time and Cost.**

PROTOTYPE DEVELOPMENT
- Proof of Concept and Feasibility
- Process Development
- Engineering Expertise

ENVIRONMENTAL LIFE TEST
- Identify Reliability Issues
- Avoid Issues in Field of Use
- Turnkey Testing and Overflow Support

MANUFACTURING SERVICES
- Scale Up
- Low-volume Production
- Quality Assurance

The SMART Advantage

Your Microelectronic Package Assembly Solution for MEMS Sensors

The SMART Advantage. **Lowest Overall Development Time and Cost.**

Scanning Electron Microscope (SEM) image of Al wire bond after test.

Scalable Tooling Design

and the design cycles become much shorter. Implementation of Concurrent Engineering hand-in-hand with the Test Early Test Often strategy adds real, measurable value. These combined engineering strategies significantly lower overall development time and cost. More information about SMART Microsystems services can be found at www.smartmicrosystems.com. &